2009年2月25日

基本邏輯名詞

最近看到一些簡單的邏輯 (Logic) 英詞名詞,並不是很清楚,所以,找出來再複習一下。


其實大部份是很簡單的,只是換成英文就不熟了.



Rules of Inference





















 Modus Ponens


[tex]


\displaystyle\begin{array}{l}


p\rightarrow q \\


p \\


\therefore q


\end{array}


[/tex]



 Modus Tollens


[tex]


\begin{array}{l}


p\rightarrow q \\


\sim q \\


\therefore \,\sim p


\end{array}


[/tex]



 Hypothetical Syllogism


[tex]


\begin{array}{l}


p\rightarrow q \\


q\rightarrow r \\


\therefore p\rightarrow r


\end{array}


[/tex]



 Disjunctive Syllogism


[tex]


\begin{array}{l}


p\vee q \\


\sim p \\


\therefore q


\end{array}


[/tex]



 Constructive Dilemma


[tex]


\begin{array}{l}


(p\rightarrow q) \& (r\rightarrow s) \\


p\vee r \\


\therefore q\vee s


\end{array}


[/tex]


 



 Absorption


[tex]


\begin{array}{l}


\,\\


p\rightarrow q \\


\therefore p\rightarrow (p\,\&\,q)


\end{array}


[/tex]



 Simplification


[tex]


\begin{array}{l}


\\


p\,\&\,q \\


\therefore p


\end{array}


[/tex]



 Conjunction


[tex]


\begin{array}{l}


p \\


q \\


\therefore p\,\&\,q


\end{array}


[/tex]



 Addition


[tex]


\begin{array}{l}


\\


p \\


\therefore p \vee q


\end{array}


[/tex]



 


Rules of Replacement













































Double Negation [tex] p\leftrightarrow \,\sim\sim q[/tex]
Commutation [tex]  \begin{array}{l} \\  (p\vee q)\leftrightarrow  (q\vee p) \\ (p\,\&\,q)\leftrightarrow  (q\,\&\,p) \\ \end{array} [/tex]
Tautology [tex]  \begin{array}{l} \\  p\leftrightarrow  (p\vee p) \\ p\leftrightarrow  (p\,\&\,p) \\ \end{array} [/tex]
Association

[tex]  \begin{array}{l} \\ \left[p\vee  (q\vee r)\right] \leftrightarrow  \left[(p\vee  q)\vee r\right] \\  \left[p\,\&\,  (q\,\&\, r)\right] \leftrightarrow  \left[(p\,\&\,  q)\,\&\, r\right] \\ \end{array} [/tex]


Transposition [tex]  \begin{array}{l} \\  (p\rightarrow q) \leftrightarrow  (\sim q\rightarrow \sim p) \\ \end{array} [/tex]
Material Implication [tex]  \begin{array}{l} \\  (p\rightarrow q) \leftrightarrow  (\sim p\vee q) \\ \end{array} [/tex]
Exportation  [tex]  \begin{array}{l} \\  \left[(p\,\&\, q)\rightarrow r }\right]  \leftrightarrow   \left[p\rightarrow (q\rightarrow r)\right]   \\ \end{array} [/tex]
Material Equivalence

[tex] \begin{array}{l} \\


(p\leftrightarrow q)\leftrightarrow \left[(p\rightarrow q) \,\&\, (q\rightarrow p)\right] \\


 (p\leftrightarrow q)\leftrightarrow \left[(p\,\&\, q) \vee (\sim p\,\&\, \sim q)\right] \\


\end{array} [/tex]


Distribution

[tex] \begin{array}{l} \\


\left[p \,\&\, (q\vee r)\left] \leftrightarrow \left[(p\,\&\, q)\vee (p\,\&\, r)\right] \\


\left[p \vee (q\,\&\, r)\left] \leftrightarrow \left[(p\vee q)\,\&\, (p\vee r)\right] \\


\end{array} [/tex]


De Morgan's Theorems

[tex] \begin{array}{l} \\


\sim(p \,\&\, q)\leftrightarrow (\sim p \vee \sim q) \\


\sim(p \vee q)\leftrightarrow (\sim p \,\&\, \sim q) \\


\end{array} [/tex]



 


Bi-conditionals Logical Equivalence


[tex] (\forall x)(\psi x\rightarrow \varphi x) \leftrightarrow  \,\sim(\exists x)(\psi x \,\&\, \sim\varphi x) [/tex]


"Everything in the lake is wet." 


is logically equivalent to


"There isn't anything in the lake which is not wet."


 


[tex] (\exists x)(\psi x\,\&\, \varphi x) \leftrightarrow  \,\sim(\forall x)(\psi x \rightarrow \sim\varphi x) [/tex]


"There exists at least one individual who is both a native of Boston and of Irish descent."


is logically equivalent to


"It's not true that no natives of Boston are of Irish descent."


 


[tex] (\forall x)(\psi x\rightarrow \sim\varphi x) \leftrightarrow \,\sim(\exists x)(\psi x \,\&\, \varphi x) [/tex]


"No residents of Boston are Irish."


is logically equivalent to


"It's not true that some residents of Boston are Irish."


 


[tex] (\exists x)(\psi x\,\&\, \sim\varphi x) \leftrightarrow \,\sim(\forall x)(\psi x \rightarrow \varphi x) [/tex]


 "Some residents of Boston are not Irish."


is logically equivalent to


"Not all residents of Boston are Irish."


 


 



Orignal From: 基本邏輯名詞